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Partially coherent surface plasmon polariton vortex fields
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We introduce a class of partially coherent surface plasmon polariton (SPP) fields carrying optical vortices,
generated through a judicious superposition of planar SPPs with a prescribed initial phase distribution and
arbitrary correlations at a metal-air interface. We explore the global degree of coherence, energy densities,
energy flows, orbital and spin angular momenta, and the polarization states of such partially coherent SPP vortex
(SPPV) fields in terms of their coherent mode representation. The salient physical characteristics of these SPPV
fields can be widely tuned by controlling the constituent SPP correlations, tailoring such SPPV fields to desired
applications in statistical nanoplasmonics.
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I. INTRODUCTION

Vortices are ubiquitous in nature, arising in such diverse
physics contexts as hydrodynamic turbulence, liquid crystals,
quantum superfluids, nonlinear pattern formation in complex
systems, and optics [1]. In optics, in particular, vortices
emerge either as line singularities in three-dimensional (3D)
optical fields [2], or as isolated point singularities in the helical
wave fronts of paraxial light beams [3]. The optical fields
endowed with vortices can carry orbital angular momentum
(OAM), rendering them highly desirable for various applica-
tions [4].

Although the majority of vortex-carrying optical fields
studied to date have been fully spatially coherent, partially
coherent fields with optical vortices have also been explored
[5–9]. The latter were found to possess unique features, such
as coherence vortices [10–12] and coherence currents [13],
absent in fully coherent vortex fields. As partially coherent
fields, in general, were found superior to their fully co-
herent counterparts in a number of applications, including
speckle-free imaging [14], correlation imaging [15], informa-
tion transfer through random media [16,17], as well as mi-
croparticle trapping and manipulation [18], partially coherent
vortex beams, in particular, were shown to be especially well
suited to control self-focusing in nonlinear optics [19] and to
implement optical communication protocols through random
environments [20].

At the same time, surface electromagnetic fields in plas-
monics, known as the surface plasmon polaritons (SPPs), can
be endowed with near-field optical vortices as well [21,22].
Fully spatially coherent SPP fields can be furnished with vor-
tex phases by spiral plasmonic lenses [23], metallic holograms
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[24], and SPP interface engineering [25]. The ensuing SPP
vortex (SPPV) fields have been shown to carry OAM [26],
opening the door to attractive applications, for instance, in
on-chip data storage [27].

To date, however, plasmonics has mainly concerned fully
coherent electromagnetic fields [28]. Only lately has there
been an increasing recognition that coherence, as a central
degree of freedom, can be exploited to control the funda-
mental properties of SPP fields themselves [29–33]. Such
coherence customized SPPs are expected to serve as versa-
tile tools which could be utilized, e.g., for plasmon contin-
uum spectroscopy [34], subwavelength white-light imaging
[35], and controlled coupling of light-emitting elements [36].
Furthermore, coherence tailored SPPs have been used for
synthesizing structured surface electromagnetic fields, such
as partially coherent axiconlike SPP fields [37] and SPP
coherence lattice fields [38]. In this context, not only does
exploring partially coherent SPP fields endowed with optical
vortices present fundamental interest, but it can prove instru-
mental in near-field optics and surface physics applications
as well.

In this article, we introduce a wide class of SPPV fields
with controllable coherence, generated via judicious super-
positions of arbitrarily correlated planar SPPs at a metal-air
interface. We stress that all salient features of the proposed
SPPVs, including their energy density, energy flow, orbital
and spin angular momentum, and polarization state, can be
widely tuned by adjusting the spatial coherence of the fields,
thereby distinguishing the present SPPV fields from the fully
spatially coherent SPP fields endowed with optical vortices
that have been reported to date. The broad tunability of
partially coherent SPPV field distributions may well find
diverse applications, ranging from controlled nanoantenna ex-
citation and nanoparticle manipulation to near-field data stor-
age and optical communications in advanced nanoplasmonic
devices.
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FIG. 1. Synthesis of the SPPV fields. (a) Focused circularly
polarized, OAM carrying beam incident onto the circular filter, glass
prism, and metal slab structure, with ϕinc being the angle of incidence
of light selected by the filter. (b) Illustration of the polarization and
phase distribution of the light on the circular ring transmitted by the
filter, with s = 1 and l = 1. (c) SPPs excited on the circular ring
with the desired phase distribution and propagating towards the ring
center. (d) Notations related to the analysis of SPPs.

II. FIELD CHARACTERIZATION

The SPPV field geometry, akin to Kretschmann’s setup
[28], involves a homogeneous, isotropic, and nonmagnetic
metal film deposited on a glass prism in the xy plane. The
SPPV field at the metal-air interface (z = 0) is composed of
uniformly distributed planar SPPs of a certain initial phase
profile, with their origins along a circular ring of radius
a, centered at the origin. The phase distribution among the
SPP constituents can be introduced, e.g., with the aid of a
plasmonic vortex lens [23], an optical metasurface [24], or by
using a circularly polarized, OAM carrying partially spatially
coherent beam as an excitation light source [39]. Prior to
focusing the source beam onto the glass prism and metal film,
we propose to transmit the beam through a circular spatial
filter with a narrow transmission band situated in front of
the prism [Fig. 1(a)]. We then obtain a ring of circularly
polarized light with the phase gradient following the input
beam’s OAM [Fig. 1(b)]. The narrowband circular filter can
also be created dynamically with the help of a spatial light
modulator [40], for example. The angle of incidence ϕinc,
controlled by the focal distance of the focusing lens, optimizes
phase matching for SPP excitation [30]. The SPPs emanate
from the illuminated ring with appropriate phase distributions
and propagate towards the circle’s center [Fig. 1(c)]. A general
approach to fully coherent SPP excitation from a circular ring,
but without phase matching or the vortex phases, has recently
been demonstrated experimentally [41,42].

We let r0(θ ) = −aê‖(θ ) represent the excitation position
of an individual SPP that propagates in the direction ê‖(θ ) =
cos θ êx + sin θ êy toward the ring center, where 0 � θ < 2π

is the azimuthal angle with respect to the x axis, and êx

and êy are the Cartesian unit vectors along the x and y axes

[Fig. 1(d)]. The spatial part of the electric field of an SPP in
air, at point r and (angular) frequency ω, can be expressed as
[30]

Eθ (r, ω) = E (θ, ω)p̂(θ, ω)eik(θ,ω)·[r−r0 (θ )]eiφ(θ ), (1)

where E (θ, ω) is a (complex-valued) field amplitude at the
excitation point, and

k(θ, ω) = k‖(ω)ê‖(θ ) + kz(ω)êz, (2)

p̂(θ, ω) = k̂(θ, ω) × ŝ(θ ) (3)

are the wave and normalized polarization vectors, respec-
tively, with k̂(θ, ω) = k(θ, ω)/|k(ω)|, ŝ(θ ) = êz × ê‖(θ ), and
êz being the Cartesian unit vector along the z axis. Note that
the wave-vector magnitude |k(ω)| is independent of θ and not
equal to the free-space wave number k0 = ω/c [43], where c
is the speed of light in vacuum. We further take the metal film
to be thick enough (e.g., 50–100 nm for Ag), such that the
mode overlap across the metal is negligible [43,44]. Thus, the
tangential and normal wave-vector components in Eq. (2) read
as [28]

k‖(ω) = k0

[
εr (ω)

εr (ω) + 1

]1/2

, (4)

kz(ω) = k0

[
1

εr (ω) + 1

]1/2

, (5)

where εr (ω) is the (complex-valued) relative electric per-
mittivity of the metal. We stress here that once a suitable
plasmonic material in the thick film Kretschmann setup has
been chosen, the physical properties of individual SPPs (at
a given frequency) are fully determined by the wave-vector
components in Eqs. (4) and (5), regardless of the excitation
process specifics.

The factor φ(θ ) in Eq. (1) denotes the phase of the SPP
at the excitation point, which is determined by the dynamical
phase on plasmon creation. In our case, we assume excitation
with a circularly polarized, OAM carrying incident beam
[5–9], whereupon due to the spin-orbit coupling effect of the
light in plasmon generation [45], the initial phase difference
between any two constituent SPPs of the SPPV field takes on
the form

φ(θ1) − φ(θ2) = m(θ1 − θ2). (6)

Here, m = s + l , with s and l being the spin and orbital an-
gular momentum—in units of h̄ per photon—of the circularly
polarized, OAM carrying incident beam, respectively.

It follows from the Maxwell equations in vacuum that the
corresponding spatial part of the magnetic field for a single
SPP in air, at point r and frequency ω, reads as

Hθ (r, ω) = −k0(ω)

Z0|k(ω)|E (θ, ω)ŝ(θ )eik(θ,ω)·[r−r0 (θ )]eiφ(θ ). (7)

Here, Z0 = [μ0/ε0]1/2 is the free-space impedance and μ0 and
ε0 are the vacuum permeability and permittivity, respectively.
In Eq. (7), ŝ(θ ) = êz × ê‖(θ ) = − sin θ êx + cos θ êy is, as be-
fore, the unit polarization vector for the magnetic field. Hence
the magnetic field for the SPP oscillates only in the xy plane
and is always tangential to the excitation circle.
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Taking all uniformly distributed SPPs excited on the cir-
cular ring into account, the electric and magnetic parts of the
SPPV field in air, for (x2 + y2)1/2 � a and at frequency ω,
become

E(r, ω) =
∫ 2π

0
Eθ (r, ω)dθ, (8)

H(r, ω) =
∫ 2π

0
Hθ (r, ω)dθ. (9)

We next take E(r, ω) and H(r, ω) in Eqs. (8) and (9)
to represent statistical field realizations. The spectral electric
and magnetic coherence matrices, which encompass all the
second-order stochastic properties of stationary electric and
magnetic fields, can then be written as [46]

W(E)(r1, r2, ω) = 〈E∗(r1, ω)ET(r2, ω)〉, (10)

W(H)(r1, r2, ω) = 〈H∗(r1, ω)HT(r2, ω)〉, (11)

where the asterisk, superscript T, and angle brackets denote
complex conjugate, matrix transpose, and ensemble average,
respectively. It follows from Eqs. (1)–(11) that the spectral
electric and magnetic coherence matrices for the SPPV field
read

W(E)(r1, r2, ω) = e−2k′′
‖ (ω)a

∫ 2π

0

∫ 2π

0
W (θ1, θ2, ω)

× p̂∗(θ1, ω)p̂T(θ2, ω)

× ei[k(θ2,ω)·r2−k∗(θ1,ω)·r1]

× eim(θ2−θ1 )dθ1dθ2, (12)

W(H)(r1, r2, ω) = k2
0 (ω)

Z2
0 |k(ω)|2 e−2k′′

‖ (ω)a

×
∫ 2π

0

∫ 2π

0
W (θ1, θ2, ω)ŝ(θ1)ŝT(θ2)

× ei[k(θ2,ω)·r2−k∗(θ1,ω)·r1]

× eim(θ2−θ1 )dθ1dθ2. (13)

Here, k′′
‖ (ω) denotes the imaginary part of k‖(ω), which de-

termines the SPP propagation length lSPP(ω) = 1/k′′
‖ (ω), and

W (θ1, θ2, ω) = 〈E∗(θ1, ω)E (θ2, ω)〉 (14)

is an angular correlation function among the individual
SPPs excited at different angular coordinates. The function
W (θ1, θ2, ω) can be arbitrarily designed within the framework
of the recently established “plasmon coherence engineering”
paradigm [30].

Equations (12)–(14) represent a stationary polychromatic
SPPV field of arbitrary spatial coherence at a metal-air in-
terface with the electromagnetic properties of all individual
SPPs fully accounted for. We note that the SPPV fields possess
high structural stability with respect to the excitation ring
radius variations since the radius a acts effectively merely
as a scaling factor of the coherence matrices, and thereby of
all derivative quantities. Further, we observe in Eqs. (12) and
(13) that once the metal parameters, radius a, and the angular
momentum m of the excitation light are known, all elements

apart from W (θ1, θ2, ω) are specified in the coherence matri-
ces. Thus, the angular SPP correlation function W (θ1, θ2, ω)
is an additional and essential degree of freedom that can be
exploited to control the fundamental physical properties, such
as the coherence state, energy density, energy flow, angular
momentum, and polarization, of the SPPV fields. This is
a demonstration of the power of spatial coherence control
to engineer surface electromagnetic fields carrying optical
vortices.

III. COHERENT MODE REPRESENTATION

We assume that the angular SPP correlation function
possesses circular periodic symmetry and we consider SPP
constituents with equal initial intensities. Thus, W (θ1, θ2, ω)
in Eq. (14) can be expanded into a two-dimensional Fourier
series with respect to the angular coordinates as [47]

W (θ1, θ2, ω) = ISPP(ω)
∞∑

n=−∞
βn(ω)ein(θ2−θ1 ), (15)

where ISPP(ω) denotes the SPP initial intensity, {n} are the
mode indices, and {βn(ω)} are the Fourier coefficients. In
order to make sure that W (θ1, θ2, ω) is a genuine correlation
function, {βn(ω)} should be real and non-negative [46]. We
note that the expansion in Eq. (15) is essentially a coherent
mode representation of the SPP angular correlation function,
and hence the Fourier coefficients {βn(ω)} correspond to
the modal weights, each representing the amount of energy
carried by an individual coherent mode.

The SPPV field is fully coherent if and only if there
is only one term in the above series. The field becomes
partially coherent with the increase of the number of se-
ries terms. In the limiting case of a very large number of
modes with identical modal weights [βn(ω) = 1 for all n],
Eq. (15) reduces to W (θ1, θ2, ω) = ISPP(ω)δ(θ1 − θ2), where
δ(·) is the Dirac delta function. As a consequence, the
fields in any pair of angular directions, θ1 �= θ2, are mutually
uncorrelated.

On substituting from Eq. (15) into Eqs. (12) and (13) and
integrating over θ , we obtain analytical expressions for the
electric and magnetic coherence matrices for the SPPV fields.
These can be expressed in terms of the vectorial coherent
mode representations as

W(§)(r1, r2, ω) =
∞∑

n=−∞
ξ (§)

n (ω)�(§)∗
n (r1, ω)�(§)T

n (r2, ω),

(16)

where

�(§)
n (r, ω) = �(§)

n (r, ω)/N (§)
n (ω), (17)

ξ (§)
n (ω) = βn(ω)π2ISPP(ω)e−2k′′

‖ (ω)aN (§)2
n (ω), (18)

are the normalized vector coherent modes and their respec-
tive modal weights. The superscript § ∈ (E, H) identifies
the electric or magnetic field component and N (§)

n (ω) =
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[
∫

V �(§)T
n (r, ω)�(§)∗

n (r, ω)d3r]
1/2

are the normalization fac-
tors for the unnormalized vector coherent modes �(§)

n (r, ω),
with

∫
V · d3r denoting an integration volume within the

SPP excitation region V. We stress that the modal weights
{ξ (§)

n (ω)} are real and nonnegative, and the vector coher-
ent modes {�(§)

n (r, ω)} are orthonormal, such that the inner

product is given by∫
V

�(§)T
n1

(r, ω)�(§)∗
n2

(r, ω)d3r = δn1,n2 , (19)

where δn1,n2 is the Kronecker delta symbol. In cylindrical
coordinates, the unnormalized vector coherent modes are
expressed in closed form as (see Appendix A)

�(E)
n (r, ω) = |k(ω)|−1eikz (ω)zei(m+n)ϕ (−ikz(ω){Jm+n+1[k‖(ω)ρ] − Jm+n−1[k‖(ω)ρ]}êρ

− kz(ω){Jm+n+1[k‖(ω)ρ] + Jm+n−1[k‖(ω)ρ]}êϕ + 2k‖(ω)Jm+n[k‖(ω)ρ]êz ), (20)

�(H)
n (r, ω) = [Z0|k(ω)|]−1eikz (ω)zei(m+n)ϕ (k0(ω){Jm+n+1[k‖(ω)ρ] + Jm+n−1[k‖(ω)ρ]}êρ

− ik0(ω){Jm+n+1[k‖(ω)ρ] − Jm+n−1[k‖(ω)ρ]}êϕ ), (21)

where (ρ, ϕ) are cylindrical polar coordinates, Jν (·) is the
Bessel function of the first kind and of order ν, and êρ , êϕ ,
êz form an orthonormal vector set in the cylindrical reference
frame. It follows from Eqs. (20) and (21) that any SPPV
coherent mode carries a vortex phase ei(m+n)ϕ ; hence the mode
topological charge is determined by the angular momentum
m = l + s of the excitation light beam and the mode index n
of the angular SPP correlation function. It is also of interest to
note that the electric and magnetic coherent modes given by
Eqs. (20) and (21) are coupled by Maxwell’s equations.

IV. ENERGY DENSITY AND TOTAL ENERGY

The (time-averaged) energy density of a partially coherent
electromagnetic field is given by [46]

w(r, ω) = 1
4 [ε0 tr W(E)(r, r, ω) + μ0 tr W(H)(r, r, ω)], (22)

where tr denotes the matrix trace. On substituting from
Eq. (16) the vectorial coherent mode representations for the
coherence matrices into Eq. (22), we obtain the SPPV field
energy density in terms of the energy densities carried by the
individual vector coherent modes as

w(r, ω) = 1

4

∞∑
n=−∞

[
ε0ξ

(E)
n (ω)

∣∣�(E)
n (r, ω)

∣∣2

+ μ0ξ
(H)
n (ω)

∣∣�(H)
n (r, ω)

∣∣2]
. (23)

The total energy of an SPPV field can then be determined
by volume integration of the energy density within the SPP
excitation region or by summing the energies carried by the
individual modes. Based on the orthonormality of the vector
coherent modes, Eq. (19), the two alternative approaches lead
to the same result

W (ω) =
∫

V
w(r, ω)d3r =

∞∑
n=−∞

ξn(ω), (24)

where ξn(ω) = [ε0ξ
(E)
n (ω) + μ0ξ

(H)
n (ω)]/4 is the energy car-

ried by the vector coherent mode of index n. The SPPV field
energy density control by optical coherence will be illustrated
later in Fig. 2.

V. GLOBAL DEGREE OF COHERENCE

In analogy with the electric global degree of coherence [48]
and taking account of the magnetic global degree of coherence
[49], the (squared) global degree of coherence for a partially
coherent electromagnetic field can be defined as

G2(ω) =
∫

V1,V2
F2(r1, r2, ω)d3r1d3r2

W2(ω)
, (25)

where

F (r1, r2, ω) = ε0

4
‖W(E)(r1, r2, ω)‖F

+ μ0

4
‖W(H)(r1, r2, ω)‖F, (26)

where ‖ · ‖F is the Frobenius norm. The global degree of
coherence is a useful quantity to characterize how coherent
an electromagnetic field is on average within a limited vol-
ume. It is bounded as 0 < G(ω) � 1, with the upper limit
corresponding to a fully coherent field and the lower limit
to a virtually incoherent field, while the intermediate values
describe partially coherent fields. It follows from Eqs. (16)–
(21) and (24)–(26) that the global degree of coherence of an
SPPV field is given by the expression

G(ω) =
[ ∑∞

n=−∞ ξ 2
n (ω)

]1/2∑∞
n=−∞ ξn(ω)

. (27)

We can infer from Eq. (27) that G(ω) = 1 if and only if a
single coherent mode is excited, whereby the SPPV field is
fully coherent. As the number of excited modes increases,
the global degree of coherence is reduced and the SPPV field
becomes partially coherent.

VI. ANGULAR MOMENTUM

To assess the angular momentum of the SPPV field, we em-
ploy a canonical approach [50], which is more suitable for the
description of the angular momentum properties of light than
simply using the Poynting vector components. This is because
the canonical approach can separately address spin and orbital
degrees of freedom of light, making these canonical quantities
directly measurable [51,52]. In the canonical picture, the
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FIG. 2. Energy density w(r, ω) and the in-plane Poynting vector components, [〈P(r, ω)〉ρ, 〈P(r, ω)〉ϕ], for SPPV fields at a gold-air
interface at the free-space wavelength λ = 632.8 nm, for a varying number of coherent modes N and average OAM L(ω): (a) N = 3 and
βn(ω) = 1 for n ∈ (−3, −2, −1), L(ω) = 0; (b) N = 3, βn(ω) = 1 for n ∈ (1, 2, 3), L(ω) = 4h̄êz; (c) N = 3, βn(ω) = 1 for n ∈ (3, 4, 5), and
L(ω) = 6h̄êz; (d) N = 3, βn(ω) = 1 for n ∈ (−9, −8, −7), and L(ω) = −6h̄êz; (e) N = 1, βn(ω) = 1 for n = 1, and OAM L(ω) = 3h̄êz;
(f) N = 5, βn(ω) = 1 for n ∈ (−1, . . . , 3), and L(ω) = 3h̄êz; (g) N = 9, βn(ω) = 1 for n ∈ (−3, . . . , 5), and L(ω) = 3h̄êz; (h) N = 15,
βn(ω) = 1 for n ∈ (−6, . . . , 8), and L(ω) = 3h̄êz. Note that the excitation light angular momentum is fixed at m = 2 and the excitation ring
radius is set to a = lSPP(λ). The energy density w(r, ω) is normalized with respect to ε0S(0, ω). The relative permittivity of gold is from
empirical data in [53].

(time-averaged) OAM and spin angular momentum (SAM)
densities of a monochromatic optical field are given by [50]

l(r, ω) = r × p(r, ω), (28)

s(r, ω) = 1

4ω
Im{ε0E∗(r, ω) × E(r, ω)

+μ0H∗(r, ω) × H(r, ω)}, (29)

respectively. The orbital (or canonical) linear momentum den-
sity p(r, ω) in Eq. (28) is defined as

p(r, ω) = 1

4ω
Im{ε0E∗(r, ω) · [∇]E(r, ω)

+ μ0H∗(r, ω) · [∇]H(r, ω)}, (30)

where we use the notation A · [∇]B = Ax∇Bx + Ay∇By +
Az∇Bz. For a partially coherent electromagnetic field, the
OAM and SAM densities can be obtained through ensemble
averaging in Eqs. (28)–(30). Furthermore, by applying the
vector coherent mode representation of Sec. III, we find the
OAM density of an SPPV field as

〈l(r, ω)〉 = r × 〈p(r, ω)〉, (31)

with

〈p(r, ω)〉 = 1

4ω
Im

[
ε0

∞∑
n=−∞

ξ (E)
n (ω)�(E)∗

n (r, ω) · [∇]�(E)
n (r, ω)

+μ0

∞∑
n=−∞

ξ (H)
n (ω)�(H)∗

n (r, ω) · [∇]�(H)
n (r, ω)

]
,

(32)

and the SAM density of an SPPV field as

〈s(r, ω)〉 = 1

4ω
Im

[
ε0

∞∑
n=−∞

ξ (E)
n (ω)�(E)∗

n (r, ω) × �(E)
n (r, ω)

+μ0

∞∑
n=−∞

ξ (H)
n (ω)�(H)∗

n (r, ω) × �(H)
n (r, ω)

]
.

(33)

Here, we are interested in the average angular momentum
per photon, which is given by the total (integrated) angular
momentum divided by the total number of photons in the
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SPPV excitation region. Thus, the average OAM L(ω) and
the average SAM S(ω) associated with a photon in the SPPV
field can be expressed as

L(ω) = 〈L(ω)〉/Nph, (34)

S(ω) = 〈S(ω)〉/Nph, (35)

where the total OAM, SAM, and photon number within the
SPPV field excitation region are respectively given by

〈L(ω)〉 =
∫

V
〈l(r, ω)〉d3r, (36)

〈S(ω)〉 =
∫

V
〈s(r, ω)〉d3r, (37)

Nph = W (ω)/(h̄ω). (38)

It then follows from Eqs. (17)–(21), (24), (31), (32), (34),
(36), and (38) that the average OAM per photon of the SPPV
field is

L(ω) =
∑∞

n=−∞(m + n)ξn(ω)∑∞
n=−∞ ξn(ω)

h̄êz. (39)

The derivation of this general result can be found in
Appendix B. Several instructive conclusions can be drawn
from Eq. (39).

(i) The average OAM L(ω) is strictly parallel (or antiparal-
lel) with the z axis since the radial and azimuthal components
vanish when integrating the local OAM density 〈l(r, ω)〉 over
the plasmon excitation region. This behavior is rather intu-
itive considering the axial symmetry of the SPPV excitation
geometry and is quite different from that of a propagating
vortex beam [3], for which the average OAM is parallel
to the propagation direction. The average SPPV OAM, on
the other hand, is perpendicular to the SPP propagation
direction.

(ii) The average OAM of a fully coherent SPPV field,
composed of a single vector coherent mode �(§)

n0
(r, ω), is

L(ω) = (m + n0)h̄êz. This is a quite obvious result due to
the spin-orbit coupling effect of light upon fully coherent SPP
excitation [45].

(iii) The average OAM of a partially coherent SPPV field
can be arbitrarily controlled by the angular SPP correlation
function. In particular, whenever {ξn(ω)} satisfy the condition
ξn(ω) = ξ2p−n−2m(ω), where p is an arbitrary integer, the
average OAM is L(ω) = ph̄êz (see Appendix B for the deriva-
tion). Hence, if ξn(ω) = ξ−n−2m(ω), the SPPV field carries no
OAM, L(ω) = 0. On the other hand, if ξn(ω) = ξ−n(ω), the
average SPPV OAM is mh̄êz, i.e, it is determined solely by
the angular momentum of the excitation light.

(iv) For a fully incoherent SPPV field, the relation ξn(ω) =
ξ−n−2m(ω) holds (see Appendix C for details), implying ab-
sence of OAM. This rather obvious result formally follows
from the Bessel function property J−n(x) = (−1)nJn(x) and
from the fact that the modal weights {βn(ω)} in the SPPV
coherent mode representation are all equal to unity in the
incoherent case (see Sec. III).

In addition to exercising arbitrary control of the average
SPPV OAM, we can freely tailor the SPPV global degree of
coherence by adjusting the SPP angular correlation function,
as is indicated by Eq. (27). It follows that an SPPV field with
a given OAM may have a variable global degree of coherence
or vice versa.

Next, we examine the average SAM of an SPPV field with
the help of Eqs. (17)–(21), (24), (33), (35), (37), and (38).
We find that the average SPPV SAM is also normal to the
metal-air interface and it can be expressed as

S(ω) =
∫

V Sz(r, ω)d3r

W (ω)
h̄ωêz. (40)

Here, the z component of the SAM density reads

Sz(r, ω) = ε0

8ω

|kz(ω)|2 + k2
0 (ω)

|k(ω)|2 S(z, ω)
∞∑

n=−∞
βn(ω)

× [|Jm+n+1[k‖(ω)ρ]|2 − |Jm+n−1[k‖(ω)ρ]|2], (41)

where

S(z, ω) = 4π2ISPP(ω)e−2k′′
‖ (ω)a−2k′′

z (ω)z, (42)

and k′′
z (ω) is the imaginary part of kz(ω). It is quite instructive

to observe by looking at Eqs. (40) and (41) that the average
SPPV SAM behavior is closely linked to that of the OAM.
Indeed, in the absence of OAM, we have ξn(ω) = ξ−n−2m(ω),
and it follows at once from Eq. (41) that the SAM vanishes as
well. For an SPPV field carrying a nonzero OAM, the mag-
nitude and direction of its SAM can be controlled by the
SPP angular correlation function for a given magnitude of the
angular momentum m. The physics behind this SPPV SAM
behavior is rooted in the SPPV polarization state distribution,
which will be examined in detail in Sec. VIII.

VII. ENERGY FLOW

The SPPV energy flow can be studied by considering an
ensemble average of the (time-averaged) Poynting vector in
the space-frequency representation, viz.,

〈P(r, ω)〉 = 1
2 Re〈E(r, ω) × H∗(r, ω)〉. (43)

On substituting from Eqs. (1)–(7) and (15) into Eq. (43), we
obtain for the SPPV field (see Appendix D for the derivation)

〈P(r, ω)〉 = k0(ω)S(z, ω)

4Z0|k(ω)|2 Re[Pρ (ρ, ω)êρ

+ Pϕ (ρ, ω)êϕ + Pz(ρ, ω)êz], (44)

where the corresponding components read

Pρ (ρ, ω) = ik‖(ω)
∞∑

n=−∞
βn(ω)Jm+n[k‖(ω)ρ]

×{J∗
m+n−1[k‖(ω)ρ] − J∗

m+n+1[k‖(ω)ρ]}, (45)

Pϕ (ρ, ω) = 1

ρ

2k‖(ω)

k∗
‖ (ω)

∞∑
n=−∞

βn(ω)

× (m + n)|Jm+n[k‖(ω)ρ]|2, (46)
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Pz(ρ, ω) = kz(ω)
∞∑

n=−∞
βn(ω)

×{|Jm+n−1[k‖(ω)ρ]|2 + |Jm+n+1[k‖(ω)ρ]|2}.
(47)

Equations (44)–(47) reveal several salient features of the
SPPV energy flow. First, the normal component of the Poynt-
ing vector 〈P(r, ω)〉z � 0 due to the real part of kz(ω) be-
ing negative. It follows that the SPPV energy flows toward
the metal surface, except for some special points where
〈P(r, ω)〉z = 0 and the energy flow is along the metal-air
interface. Second, the magnitude and direction of the Poynt-
ing vector projection 〈P(r, ω)〉ϕ onto the interface plane are
determined by the average OAM of the field. For example,
when the field carries no average OAM, we have ξn(ω) =
ξ−n−2m(ω), and therefore 〈P(r, ω)〉ϕ = 0, implying that the
energy flow along the interface only has a radial component.
However, for the fields that carry a nonzero average OAM,
the azimuthal component 〈P(r, ω)〉ϕ is, in general, present as
well. Moreover, the spatial 1/ρ dependence of the azimuthal
component 〈P(r, ω)〉ϕ indicates the helical distribution of the
energy flow at the metal-air interface.

To illustrate the SPPV energy flow along the metal-air
interface, we display in Figs. 2(a)–2(d), with white arrows in
the top-row panels, the spatial behavior of the Poynting vector
[〈P(r, ω)〉ρ, 〈P(r, ω)〉ϕ] in a gold-air interface plane for the
SPPV fields with the same number of vector coherent modes
but with a different average OAM. The free-space wavelength
is λ = 632.8 nm and the excitation ring radius is taken to be
a = lSPP(λ). The figure background shows the corresponding
energy densities, which are calculated using Eqs. (17)–(21)
and (23). We note here that the angular momentum of the
excitation light is fixed to m = 2 and thus the average OAM
and coherence of the SPPV fields are completely controlled by
the SPP angular correlation function. We infer from Fig. 2(a)
that in the absence of the OAM, the in-plane energy flow
is purely radial towards the ring center. At the same time,
the energy density shows a hot spot at the center, which is
similar to that for the partially coherent axiconic SPP fields
[37]. However, Figs. 2(b)–2(d) illustrate that for the fields
carrying nonzero average OAM, the in-plane energy flow
displays a circular pattern around the ring center, resulting
in doughnutlike energy density distributions at the metal-air
interface. The energy circulation direction is determined by
the sign of the average OAM: a positive OAM induces a
counterclockwise energy circulation, while the energy flow
direction is reversed for a negative OAM [see Fig. 2(d)]. We
emphasize, however, that the in-plane energy flow patterns are
not strictly azimuthal due to the presence of a nonzero radial
component of the Poynting vector.

To explore the influence of the SPPV coherence on the
energy flow patterns, we display in Figs. 2(e)–2(h) the in-
plane Poynting vectors [〈P(r, ω)〉ρ, 〈P(r, ω)〉ϕ] and the cor-
responding energy densities w(r, ω) for the SPPV fields of
the same average OAM but a different number of coherent
modes at the gold-air interface at the free-space wavelength
λ = 632.8 nm, with the excitation ring radius taken to be a =
lSPP(λ). We find that the in-plane energy flow exhibits circular

patterns in the counterclockwise direction as the SPPV fields
carry the same positive average OAM. However, the char-
acteristic doughnutlike energy density distribution generally
disappears as the number of coherent modes is increased,
implying reduced spatial coherence. For example, when the
number of modes reaches 15 [Fig. 2(h)], the energy density
displays a flat-top profile at the metal surface. This is due to
partially impaired interference among partially coherent SPP
components.

From the energy density and flow distributions of partially
coherent SPPV fields in Fig. 2, we may predict that optical
coherence can be employed to dynamically control optical
trapping of nanoparticles in the SPPV fields. For instance,
by modifying the optical coherence, the energy density of
the SPPV field may be modulated, generating a Gaussian,
dark-hollow, or flat-top profile. Thus, the optical force of the
trapping system, induced by the gradient of the energy density
profile, will be dynamically adjusted, and therefore different
kinds of particles may be trapped or sorted. In addition, the
effective trapping range of the optical gradient force can be
enhanced by varying the optical coherence. We further find
that the coherence-induced reversal of energy flow may be
used in the control of the particle rotation.

VIII. POLARIZATION STATE

The polarization properties characterizing the SPPV fields
are determined by the electric and magnetic polarization
matrices. Here, we focus on polarization states of the SPPV
electric fields which can be inferred from �(E)(r, ω) =
W(E)(r, r, ω). As the SPPV electric fields have three nonzero
components, we must employ a three-dimensional formalism
to describe their degree of polarization using, for instance, the
definition [54]

P(r, ω) =
[

3

2

tr �(E)2(r, ω)

tr2 �(E)(r, ω)
− 1

2

]1/2

. (48)

It readily follows from Eqs. (16)–(20) as well as (48) that
P(r, ω) = 1 in the fully coherent limit, indicating that fully
coherent SPPV fields are completely polarized everywhere.
Interestingly, we also find the fields to remain highly polarized
within the SPP excitation region as their degree of coherence
is reduced all the way down to a nearly incoherent limit. This
feature makes the SPPV fields similar to (1 + 1)D partially
coherent SPP fields and the physics behind the remarkable
resilience of their polarization to coherence reduction was
discussed elsewhere [30,37].

To examine the local polarization states of the SPPV fields,
we first study the ratio of the tangential to normal components
of their electric polarization matrix

η(r, ω) = �(E)
xx (r, ω) + �(E)

yy (r, ω)

�
(E)
zz (r, ω)

. (49)

This ratio will show whether the field is predominantly polar-
ized along the normal to or in the plane of the interface. For
example, at the locations such that η(r, ω) 
 1, an SPPV field
is polarized along the normal direction; on the other hand,
at the points where η(r, ω) � 1, the field is polarized in the
interface plane. It follows from Eqs. (16)–(20) and (49) that
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FIG. 3. Ratio η(r, ω) as a function of the radial distance ρ for
SPPV fields of average OAM L(ω) = 3h̄êz at a gold-air interface at
λ = 632.8 nm, with a variable number N of coherent modes: (blue)
N = 1 and βn(ω) = 1 for n = 1; (red) N = 5 and βn(ω) = 1 for
n ∈ (−1, . . . , 3); (green) N = 9 and βn(ω) = 1 for n ∈ (−3, . . . , 5);
(yellow) N = 15 and βn(ω) = 1 for n ∈ (−6, . . . , 8). Note that the
excitation light angular momentum is fixed to m = 2. The relative
permittivity of gold is from empirical data in [53].

η(r, ω) can be written as

η(r, ω) = |kz(ω)|2
2|k‖(ω)|2

{ ∞∑
n=−∞

βn(ω)|Jm+n[k‖(ω)ρ]|2
}−1

×
∞∑

n=−∞
βn(ω){|Jm+n+1[k‖(ω)ρ]|2

+ |Jm+n−1[k‖(ω)ρ]|2}. (50)

It follows at once from Eq. (50) that η(r, ω) is independent of
position along the z axis. Therefore, we display in Fig. 3 the
ratio η(r, ω) as a function of the radial distance ρ for SPPV
fields of average OAM equal to L(ω) = 3h̄êz and of different
coherence states at a gold-air interface at λ = 632.8 nm. It can
be seen from the figure that η(r, ω) rapidly alternates between
very small and very large values in high coherence regions
of SPPV fields, causing the polarization direction to rapidly
switch between the normal and tangential to the interface.
On the contrary, η(r, ω) is a slowly varying function with
a magnitude much smaller than unity for nearly incoherent
SPPV fields, implying that such SPPV fields are highly po-
larized along the normal direction. In particular, it readily
follows from Eq. (50) that η(r, ω) = |kz(ω)|2/|k‖(ω)|2 
 1
for completely incoherent SPPV fields, implying that they are
indeed highly polarized along the normal direction.

Next, we consider only the polarization component in
the interface plane, whereby the polarization properties can
be analyzed in terms of the Stokes parameters � j (r, ω) =
tr[�t (r, ω)σ j] with j ∈ (0, . . . , 3), where �t (r, ω) is a 2 × 2
polarization matrix in the interface plane, σ0 is the 2 × 2 unit
matrix, and σ1, σ2, σ3 are the three Pauli matrices. The Stokes
parameters are real and have clear physical interpretations
[55]. Equations (16)–(20) yield the Stokes parameters of the

SPPV fields straightforwardly as

�0(r, ω) = 1

2
S(z, ω)

|kz(ω)|2
|k(ω)|2

∞∑
n=−∞

βn(ω)

× [|Jm+n+1[k‖(ω)ρ]|2 + |Jm+n−1[k‖(ω)ρ]|2],

(51)

�1(r, ω) = S(z, ω)
−|kz(ω)|2
|k(ω)|2

∞∑
n=−∞

βn(ω)

× (cos 2ϕ Re{J∗
m+n+1[k‖(ω)ρ]Jm+n−1[k‖(ω)ρ]}

− sin 2ϕ Im{J∗
m+n+1[k‖(ω)ρ]Jm+n−1[k‖(ω)ρ]}),

(52)

�2(r, ω) = S(z, ω)
−|kz(ω)|2
|k(ω)|2

∞∑
n=−∞

βn(ω)

× (sin 2ϕ Re{J∗
m+n+1[k‖(ω)ρ]Jm+n−1[k‖(ω)ρ]}

+ cos 2ϕ Im{J∗
m+n+1[k‖(ω)ρ]Jm+n−1[k‖(ω)ρ]}),

(53)

�3(r, ω) = 1

2
S(z, ω)

|kz(ω)|2
|k(ω)|2

∞∑
n=−∞

βn(ω)

×[|Jm+n+1[k‖(ω)ρ]|2 − |Jm+n−1[k‖(ω)ρ]|2],

(54)

where �0(r, ω) describes the in-plane spectral density (av-
erage intensity) at (r, ω), while �1(r, ω), �2(r, ω), and
�3(r, ω) specify the differences between the x- and y-
polarized, +π/4 and −π/4 linearly polarized, and right and
left circularly polarized average spectral densities of the in-
plane SPPV field component. Thus, the SPPV field’s state of
in-plane polarization is completely determined by �1(r, ω),
�2(r, ω), and �3(r, ω). We then consider a polarization state
of an SPPV field with no average OAM by assuming that
ξn(ω) = ξ−n−2m(ω) holds in Eqs. (52)–(54). It follows that
�3(r, ω) = 0 and �1(r, ω)/�2(r, ω) = cot 2ϕ, implying
that the in-plane SPPV field component is strictly radially
polarized [see Fig. 4(a)]. Next, for the SPPV fields with a
nonzero average OAM, we find that �3(r, ω) �= 0, which
indicates that the fields have localized regions of circular
polarization. This is the reason why nonzero average OAM
fields carry SAM as well.

In Fig. 4, we display the polarization state distribution for
SPPV fields of different coherence states and average OAM
at a gold-air interface at λ = 632.8 nm. The top left panel
of Fig. 4 demonstrates that SPPV fields with no average
OAM are radially polarized, making their polarization and
energy flow patterns quite similar [cf. Fig. 2(a)]. By the same
token, the in-plane components of OAM carrying SPPV fields
are seen to be right or left elliptically polarized. Further, as
the average OAM flips sign, the right and left elliptically
polarized regions switch places [see Fig. 2(c) and 2(d)],
thereby causing the field SAM to change its direction. In
the bottom panels of Fig. 4, the SPPV fields have the same
average OAM, but different coherence properties. We find
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FIG. 4. Polarization state distribution of the in-plane SPPV electric field component at a gold-metal interface at λ = 632.8 nm with a
variable number of coherent modes N and average OAM L(ω): (a) N = 3, βn(ω) = 1 for n ∈ (−3,−2, −1), and L(ω) = 0; (b) N = 3,
βn(ω) = 1 for n ∈ (1, 2, 3), and L(ω) = 4h̄êz; (c) N = 3, βn(ω) = 1 for n ∈ (3, 4, 5), and L(ω) = 6h̄êz; (d) N = 3, βn(ω) = 1 for n ∈
(−9,−8, −7), and L(ω) = −6h̄êz; (e) N = 1, βn(ω) = 1 for n = 1, and L(ω) = 3h̄êz; (f) N = 5, βn(ω) = 1 for n ∈ (−1, . . . , 3), and
L(ω) = 3h̄êz; (g) N = 9, βn(ω) = 1 for n ∈ (−3, . . . , 5), and L(ω) = 3h̄êz; (h) N = 15, βn(ω) = 1 for n ∈ (−6, . . . , 8), and L(ω) = 3h̄êz.
Note that the excitation light angular momentum is fixed to m = 2, and the excitation ring radius is a = lSPP(λ). The blue lines and the red and
green ellipses in the figure panels correspond to linear polarization and to right and left elliptical polarizations, respectively. Empirical data are
used for gold [53].

the polarization distributions of highly coherent SPPV fields,
which are composed of only a few coherent modes, to be
rather intricate. As the number of modes increases, thereby
reducing the field coherence, the in-plane polarization turns
progressively more radial, becoming strictly radial in the limit
of an infinite number of modes.

IX. CONCLUSIONS

We have introduced a class of structured partially coherent
SPP fields carrying optical vortices by superposing SPPs
of prescribed phase differences and arbitrary correlations at
a metal-air interface. We have determined analytically the
electric and magnetic coherence matrices, global degree of
coherence, energy densities and flows, angular momenta, and
polarization states of such SPPV fields with the help of an
appropriate coherent mode representation. We have shown
that the SPPV fields can carry both OAM and SAM which
can be controlled by adjusting the individual SPP correlations.
Whenever the individual SPPs are totally uncorrelated, the
average OAM and SAM for the SPPV field are zero, and
the energy flow and polarization state will both exhibit radial
distribution patterns. The SPPV fields carrying OAM exhibit
a circular energy flow around the excitation ring center, the
signature of an optical vortex. Further, their in-plane po-
larization distribution has a rather intricate local structure,
exhibiting nonuniform regions of circular polarization. Thus,

such SPPV fields carry a nonzero average SAM. The discov-
ered SPPV fields are expected to find numerous applications,
for instance, to nanoparticle trapping [56] and angular mo-
mentum controlled SPP lasers [57].

Ultimately, our results showcase optical coherence as a
flexible degree of freedom that could be harnessed to effi-
ciently control the salient physical properties of the SPPV
fields inside (and also outside [58]) the excitation ring, mak-
ing these tunable vortex-carrying SPPs desirable for various
applications, ranging from the enhancing the spin Hall effect
of light [59] and mediating optical spin-orbit coupling [45] to
manipulating optical forces in nanoplasmonic environments
[56].
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APPENDIX A: DERIVATION OF Eqs. (20) AND (21)

Substituting the scalar coherent-mode representation of the
angular SPP correlation function W (θ1, θ2, ω) of Eq. (15)
into Eqs. (12) and (13), the electric and magnetic coherence
matrices of the SPPV field take on the forms

W(E)(r1, r2, ω) =
∞∑

n=−∞
βn(ω)ISPP(ω)e−2k′′

‖ (ω)a

×
[∫ 2π

0
ei(m+n)θ1 p̂(θ1, ω)eik(θ1,ω)·r1 dθ1

]∗

×
[∫ 2π

0
ei(m+n)θ2 p̂(θ2, ω)eik(θ2,ω)·r2 dθ2

]T

,

(A1)

W(H)(r1,r2,ω) =
∞∑

n=−∞
βn(ω)ISPP(ω)

k2
0 (ω)

Z2
0 |k(ω)|2 e−2k′′

‖ (ω)a

×
[∫ 2π

0
ei(m+n)θ1 ŝ(θ1)eik(θ1,ω)·r1 dθ1

]∗

×
[∫ 2π

0
ei(m+n)θ2 ŝ(θ2)eik(θ2,ω)·r2 dθ2

]T

.

(A2)

Using the wave vector of Eq. (2) and the unit polarization
vectors p̂(θ, ω) and ŝ(θ ) in Eqs. (A1) and (A2), we obtain
the integration terms∫ 2π

0
ei(m+n)θ p̂(θ, ω)eik(θ,ω)·rdθ

= |k(ω)|−1eikz (ω)z
∫ 2π

0
ei(m+n)θ

×[−kz(ω) cos θ êx − kz(ω) sin θ êy + k‖(ω)êz]

×eik‖(ω)(x cos θ+y sin θ )dθ, (A3)∫ 2π

0
ei(m+n)θ ŝ(θ )eik(θ,ω)·rdθ

= eikz (ω)z
∫ 2π

0
ei(m+n)θ (− sin θ êx + cos θ êy)

×eik‖(ω)(x cos θ+y sin θ )dθ. (A4)

To do the integrations of each component in Eqs. (A3) and
(A4), the following equations are used:∫ 2π

0
eiνθ eik‖(ω)(x cos θ+y sin θ )dθ = 2π iνeiνϕJν[k‖(ω)ρ], (A5)∫ 2π

0
eiνθ cos θeik‖(ω)(x cos θ+y sin θ )dθ

= 2π iνeiνϕ ieiϕJν+1[k‖(ω)ρ] − ie−iϕJν−1[k‖(ω)ρ]

2
, (A6)∫ 2π

0
eiνθ sin θeik‖(ω)(x cos θ+y sin θ )dθ

= 2π iνeiνϕ ieiϕJν+1[k‖(ω)ρ] + ie−iϕJν−1[k‖(ω)ρ]

2i
, (A7)

where (ρ, ϕ) are cylindrical polar coordinates and Jν (·) is a
Bessel function of the first kind and of order ν. Thus the x, y,
and z components of Eq. (A3) read as

t (E)
x = π |k(ω)|−1eikz (ω)zi(m+n)ei(m+n)ϕ[−kz(ω)]

×{ieiϕJm+n+1[k‖(ω)ρ] − ie−iϕJm+n−1[k‖(ω)ρ]}, (A8)

t (E)
y = π |k(ω)|−1eikz (ω)zi(m+n)ei(m+n)ϕ[−kz(ω)]

×{eiϕJm+n+1[k‖(ω)ρ] + e−iϕJm+n−1[k‖(ω)ρ]}, (A9)

t (E)
z = π |k(ω)|−1eikz (ω)zi(m+n)ei(m+n)ϕ2k‖(ω)

×Jm+n[k‖(ω)ρ]. (A10)

The x and y components of Eq. (A4) become

t (H)
x = −πeikz (ω)zi(m+n)ei(m+n)ϕ

× {eiϕJm+n+1[k‖(ω)ρ] + e−iϕJm+n−1[k‖(ω)ρ]}, (A11)

t (H)
y = πeikz (ω)zi(m+n)ei(m+n)ϕ

× {eiϕJm+n+1[k‖(ω)ρ] − e−iϕJm+n−1[k‖(ω)ρ]}. (A12)

In cylindrical coordinates, the ρ and ϕ components of
Eqs. (A3) and (A4) are then obtained from

t (§)
ρ = cos ϕt (§)

x + sin ϕt (§)
y , (A13)

t (§)
ϕ = − sin ϕt (§)

x + cos ϕt (§)
y , (A14)

where § ∈ (E, H) denotes the electric or magnetic component.
Substituting Eqs. (A8) and (A9), as well as Eqs. (A11) and

(A12), into Eqs. (A13) and (A14), we obtain

t (E)
ρ = π |k(ω)|−1eikz (ω)zi(m+n)ei(m+n)ϕ[−ikz(ω)]

× {Jm+n+1[k‖(ω)ρ] − Jm+n−1[k‖(ω)ρ]}, (A15)

t (E)
ϕ = π |k(ω)|−1eikz (ω)zi(m+n)ei(m+n)ϕ[−kz(ω)]

× {Jm+n+1[k‖(ω)ρ] + Jm+n−1[k‖(ω)ρ]}, (A16)

and

t (H)
ρ = −πeikz (ω)zi(m+n)ei(m+n)ϕ

× {Jm+n+1[k‖(ω)ρ] + Jm+n−1[k‖(ω)ρ]}, (A17)

t (H)
ϕ = iπeikz (ω)zi(m+n)ei(m+n)ϕ

× {Jm+n+1[k‖(ω)ρ] − Jm+n−1[k‖(ω)ρ]}. (A18)

Inserting Eqs. (A15), (A16), and (A10) into Eq. (A1), and
rearranging it in the form of the vectorial coherent mode
representation in Eq. (16), we find the electric unnormalized
vector coherent modes in cylindrical coordinates expressed
by Eq. (20) and the corresponding modal weights given by
Eq. (18). Closed forms of the magnetic unnormalized vector
coherent modes in cylindrical coordinates, Eq. (21), are ob-
tained in a similar way.
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APPENDIX B: DERIVATION OF Eq. (39)

In the expression of the orbital linear momentum of the
SPPV field, Eq. (32), we have

�(§)∗
n (r, ω) · [∇]�(§)

n (r, ω)

= �(§)∗
n (r, ω) · [∇]�(§)

n (r, ω)

N (§)2
n (ω)

, (B1)

where § ∈ (E, H) denotes, as before, the electric or magnetic
components. In cylindrical coordinates,

�(§)∗
n (r, ω) · [∇]�(§)

n (r, ω) = a(§)
n êρ + b(§)

n êϕ + c(§)
n êz, (B2)

with

a(§)
n =

[
� (§)

n

]∗
ρ
∂
[
� (§)

n

]
ρ
+ [

� (§)
n

]∗
ϕ
∂
[
� (§)

n

]
ϕ
+ [

� (§)
n

]∗
z ∂

[
� (§)

n

]
z

∂ρ
,

(B3)

b(§)
n =

[
� (§)

n

]∗
ρ
∂
[
� (§)

n

]
ρ
+ [

� (§)
n

]∗
ϕ
∂
[
� (§)

n

]
ϕ
+ [

� (§)
n

]∗
z ∂

[
� (§)

n

]
z

ρ∂ϕ
,

(B4)

c(§)
n =

[
� (§)

n

]∗
ρ
∂
[
� (§)

n

]
ρ
+ [

� (§)
n

]∗
ϕ
∂
[
� (§)

n

]
ϕ
+ [

� (§)
n

]∗
z ∂

[
� (§)

n

]
z

∂z
,

(B5)

where [� (§)
n ]ρ , [� (§)

n ]ϕ , and [� (§)
n ]z are the three orthogonal

components of �(§)
n (r, ω) in the cylindrical coordinate system,

as given in Eqs. (20) and (21). Following lengthy calculations
the orbital linear momentum of the SPPV field, Eq. (32), can
be written as

〈p(r, ω)〉 = a(ρ, z, ω)êρ + b(ρ, z, ω)êϕ + c(ρ, z, ω)êz, (B6)

where the key point is that none of the three unit-vector
coefficients depends on the azimuth angle ϕ. On substituting
Eq. (B6) into Eq. (31), we then find

〈l(r, ω)〉 = ρb(ρ, z, ω)êz − zb(ρ, z, ω)êρ

+ [za(ρ, z, ω) − ρc(ρ, z, ω)]êϕ. (B7)

Replacing the unit vectors in cylindrical coordinates with
those in Cartesian coordinates, Eq. (B7) becomes

〈l(r, ω)〉 = ρb(ρ, z, ω)êz − {zb(ρ, z, ω) cos ϕ

− [ρc(ρ, z, ω) − za(ρ, z, ω)] sin ϕ}êx

− {zb(ρ, z, ω) sin ϕ

+ [ρc(ρ, z, ω) − za(ρ, z, ω)] cos ϕ}êy. (B8)

To obtain the total OAM, we do a volume integration of
the OAM density within the SPP excitation region. For the
excitation of the SPPV field, ϕ ranges from 0 to 2π . Since∫ 2π

0 sin ϕdϕ = ∫ 2π

0 cos ϕdϕ = 0, the x and y components of
〈l(r, ω)〉 vanish in the volume integration. Thus, using the
explicit form of b(ρ, z, ω) (not given), we obtain the total

OAM of the SPPV field as

〈L(ω)〉 =
∫

V
ρb(ρ, z, ω)d3rêz

= 1

ω

∞∑
n=−∞

(m + n)ξn(ω)êz. (B9)

In addition, in view of Eq. (24), the total number of photons
within the SPPV field is

Nph = W (ω)/(h̄ω) =
∞∑

n=−∞
ξn(ω)/(h̄ω). (B10)

Finally, Eqs. (B9), (B10), and (34) yield

L(ω) =
∑∞

n=−∞(m + n)ξn(ω)∑∞
n=−∞ ξn(ω)

h̄êz, (B11)

which is Eq. (39) in the main text.
For the particular case considered in point (iii) of Sec. VI,

the condition ξn(ω) = ξ2p−n−2m(ω) implies that ξn(ω) have
symmetrically equal values centered at index p − m. Thus,

∞∑
n=−∞

(m+n)ξn(ω) = p

[
ξp−m(ω) + 2

∞∑
n′=1

ξp−m+n′ (ω)

]
, (B12)

∞∑
n=−∞

ξn(ω) =
[
ξp−m(ω) + 2

∞∑
n′=1

ξp−m+n′ (ω)

]
. (B13)

Therefore, we obtain L(ω) = ph̄êz.

APPENDIX C: INCOHERENT SPPV FIELDS

Bessel functions of the first kind satisfy the property

J−n(ν) = (−1)nJn(ν). (C1)

Substituting Eq. (C1) into Eqs. (20) and (21), we obtain the
relations

�(E)T
n (r, ω)�(E)∗

n (r, ω) = �
(E)T
−n−2m(r, ω)�(E)∗

−n−2m(r, ω), (C2)

�(H)T
n (r, ω)�(H)∗

n (r, ω) = �
(H)T
−n−2m(r, ω)�(H)∗

−n−2m(r, ω). (C3)

Thus, the normalization factors for the unnormalized vector
coherent modes have the relations N (E)

n (ω) = N (E)
−n−2m(ω) and

N (H)
n (ω) = N (H)

−n−2m(ω). In addition, the modal weights {βnω}
in the SPPV coherent mode representation are all equal to
unity for the incoherent SPPV field. Therefore, from Eq. (18),
we obtain

ξ (E)
n (ω) = ξ

(E)
−n−2m(ω), (C4)

ξ (H)
n (ω) = ξ

(H)
−n−2m(ω), (C5)

whereby the relation ξn(ω) = ξ−n−2m(ω) holds for the inco-
herent SPPV fields. The average OAM for such fields obtained
from Eq. (39) thus reads

L(ω) = 0. (C6)
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APPENDIX D: TIME-AVERAGED POYNTING VECTOR

Substituting Eqs. (8) and (9) into Eq. (43), we obtain for the
time-averaged Poynting vector associated with the partially
coherent SPPV field

〈P(r, ω)〉

= 1

2
Re

〈
E(r, ω) × H∗(r, ω)

〉
= −k0(ω)

2Z0|k(ω)|Re
∫ 2π

0

∫ 2π

0
W (θ1, θ2, ω)[p̂(θ2, ω) × ŝ(θ1)]

× e−2k′′
‖ (ω)aei[k(θ2,ω)·r−k∗(θ1,ω)·r]eim(θ2−θ1 )dθ1dθ2, (D1)

where

p̂(θ2, ω) × ŝ(θ1)

|k(ω)|−1
= − k‖(ω) cos θ1êx − k‖(ω) sin θ1êy

− kz(ω)(cos θ1 cos θ2 + sin θ1 sin θ2)êz.

(D2)

Making use of Eqs. (15) and (D2) in Eq. (D1), we find

〈P(r, ω)〉

= k0(ω)S(z, ω)

8π2Z0|k(ω)|2 Re
∞∑

n=−∞
βn(ω)

× {k‖(ω)[F1(r, ω)F ∗
2 (r, ω)êx + F1(r, ω)F ∗

3 (r, ω)êy].

+ kz(ω)[|F2(r, ω)|2 + |F3(r, ω)|2]êz}, (D3)

where

F1(r, ω) =
∫ 2π

0
ei(m+n)θ eik‖(ω)(x cos θ+y sin θ )dθ, (D4)

F2(r, ω) =
∫ 2π

0
ei(m+n)θ cos θeik‖(ω)(x cos θ+y sin θ )dθ, (D5)

F3(r, ω) =
∫ 2π

0
ei(m+n)θ sin θeik‖(ω)(x cos θ+y sin θ )dθ. (D6)

Equations (D4)–(D6) can be obtained from Eqs. (A5)–(A7).
Thus, the time-averaged Poynting vector is

〈P(r, ω)〉 = k0(ω)S(z, ω)

4Z0|k(ω)|2 Re[Px(ρ, ω)êx

+ Py(ρ, ω)êy + Pz(ρ, ω)êz], (D7)

where the Cartesian components read

Px(ρ, ω) = ik‖(ω)
∞∑

n=−∞
βn(ω)Jm+n[k‖(ω)ρ]

×{eiϕJ∗
m+n−1[k‖(ω)ρ] − e−iϕJ∗

m+n+1[k‖(ω)ρ]},
(D8)

Py(ρ, ω) = k‖(ω)
∞∑

n=−∞
βn(ω)Jm+n[k‖(ω)ρ]

×{eiϕJ∗
m+n−1[k‖(ω)ρ] + e−iϕJ∗

m+n+1[k‖(ω)ρ]},
(D9)

Pz(ρ, ω) = kz(ω)
∞∑

n=−∞
βn(ω)

×{|Jm+n−1[k‖(ω)ρ]|2 + |Jm+n+1[k‖(ω)ρ]|2}.
(D10)

In cylindrical coordinates,

〈P(r, ω)〉 = k0(ω)S(z, ω)

4Z0|k(ω)|2 Re[Pρ (ρ, ω)êρ

+ Pϕ (ρ, ω)êϕ + Pz(ρ, ω)êz], (D11)

where the ρ and ϕ components read

Pρ (ρ, ω) = ik‖(ω)
∞∑

n=−∞
βn(ω)Jm+n[k‖(ω)ρ]

× {J∗
m+n−1[k‖(ω)ρ] − J∗

m+n+1[k‖(ω)ρ]}, (D12)

Pϕ (ρ, ω) = k‖(ω)
∞∑

n=−∞
βn(ω)Jm+n[k‖(ω)ρ]

× {J∗
m+n−1[k‖(ω)ρ] + J∗

m+n+1[k‖(ω)ρ]}. (D13)

Making use of the following Bessel function property

Jν−1(x) + Jν+1(x) = 2ν

x
Jν (x), (D14)

Eq. (D13) reduces to

Pϕ (ρ, ω) = 1

ρ

2k‖(ω)

k∗
‖ (ω)

∞∑
n=−∞

βn(ω)

× (m + n)|Jm+n[k‖(ω)ρ]|2. (D15)

Equations (D11), (D12), (D15), and (D10) are, respectively,
Eqs. (44)–(47) of the main text.
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